Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
IJID Reg ; 7: 281-286, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2313390

ABSTRACT

Background: This study sought to determine the prevalence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) nucleocapsid (N) and spike (S) protein immunoglobulin G (IgG) antibodies in healthcare and hospital workers (HCHWs), and changes in IgG N antibody levels over time. Methods: Longitudinal study of HCHWs at a freestanding, urban paediatric tertiary care hospital. Asymptomatic HCHWs aged ≥18 years working in clinical areas were eligible to enrol. Participants completed four surveys and blood draws over 12 months. Specimens were tested for IgG N at four timepoints and IgG S at 12 months. Results: In total, 531 HCHWs enrolled in this study; of these, 481 (91%), 429 (81%) and 383 (72%) completed follow-up blood draws at 2, 6 and 12 months, respectively. Five of 531 (1%), 5/481 (1%), 6/429 (1%) and 5/383 (1.3%) participants were seropositive for IgG N at baseline, 2, 6 and 12 months, respectively. All (374/374; 100%) participants who received one or two doses of either mRNA COVID-19 vaccine were seropositive for IgG S. One of nine unvaccinated participants was seropositive for IgG S. Conclusions: In this paediatric hospital, IgG N and IgG S were detected in 1.9% and 97.9% of HCHWs, respectively. This study demonstrated low transmission of SARS-CoV-2 among HCHWs with appropriate infection prevention measures.

2.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Article in English | MEDLINE | ID: covidwho-1786108

ABSTRACT

Multiple factors may be associated with immune responses to SARS-CoV-2 vaccines. Factors potentially related to magnitude and durability of response include age, time, and vaccine reactogenicity. This study analyzed SARS-CoV-2 IgG spike antibody responses following the second dose of vaccine in healthcare workers (HCWs). Data were collected from participants enrolled in a longitudinal SARS-CoV-2 serology study over a 12-month period. Participants completed a survey documenting symptoms post-vaccination. Serum specimens were tested for SARS-CoV-2 IgG antibodies using the Abbott Architect AdvisdeDx SARS-CoV-2 IgGII assay. Antibody levels were compared against time from second vaccine dose, and symptoms following vaccination. Altogether, 335 women (86.6%) and 52 men (13.4%) participated. Median age was 37 years (IQR 30-43). Overall median antibody level was 2150.80 [1246.12, 3556.98] AU/mL (IQR). Age was not associated with antibody concentration (p-value = 0.10). Higher antibody responses (2253 AU/mL vs. 1506 AU/mL; p = 0.008) were found in HCWs with one or more symptoms after the second dose of the vaccine (n = 311). Antibody responses persisted throughout the study period post-vaccination; statistically significant decreases in antibody responses were observed over time (p < 0.001). Higher antibody response was associated with reactogenicity post-vaccine. Age and sex were not associated with higher antibody responses.

3.
Hosp Pediatr ; 11(3): e48-e53, 2021 03.
Article in English | MEDLINE | ID: covidwho-999865

ABSTRACT

OBJECTIVES: Asymptomatic transmission of coronavirus disease 2019 (COVID-19) in health care settings is not well understood. In this study, we aimed to determine the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) antibodies in health care and hospital workers (HCHWs) and assess how antibody levels change over time. METHODS: Cross-sectional study of employed HCHWs at a freestanding, urban pediatric tertiary care hospital. Employed HCHWs ≥18 years old who were asymptomatic and worked in clinical hospital locations were eligible to participate. Participants completed blood draws and surveys at baseline (between May 4, 2020, and June 2, 2020) and 2 months later (between July 6, 2020, and August 7, 2020). Surveys collected demographic information, SARS-CoV-2 exposures, and previous COVID-19 diagnosis. RESULTS: In total, 530 participants enrolled in and completed baseline study activities. The median age was 37 years (range 19-67 years); 86% identified as female, and 80% identified as white. Two months later, 481 (91%) HCHWs completed another survey and blood draw. Four of 5 (0.9%) seropositive subjects at baseline remained seropositive at 2 months, although 3 had decreasing IgG indices. Five (1.0%) seropositive individuals, including 4 who were previously seropositive and 1 newly seropositive, were detected 2 months later. History of positive SARS-CoV-2 polymerase chain reaction testing results (P < .001) and history of COVID-19 exposure (P < .001) were associated with presence of SARS-CoV-2 antibodies. CONCLUSIONS: SARS-CoV-2 antibodies were detected in 1% of HCHWs in an urban pediatric hospital in a city with moderate SARS-CoV-2 prevalence. Participants with a known previous COVID-19 diagnosis showed a decline or loss of IgG antibodies over 2 months. These results have implications for identifying those with previous exposure and for ongoing public health recommendations for ensuring workplace safety.


Subject(s)
Antibodies, Viral/immunology , COVID-19/epidemiology , Health Personnel/statistics & numerical data , Hospitals, Pediatric/statistics & numerical data , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , COVID-19/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Pandemics , Prevalence , Risk Factors , United States/epidemiology , Young Adult
4.
J Pediatric Infect Dis Soc ; 9(5): 609-612, 2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-919288

ABSTRACT

Previous reports of coronavirus disease 2019 among children in the United States have been based on health jurisdiction reporting. We performed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing on children enrolled in active, prospective, multicenter surveillance during January-March 2020. Among 3187 children, only 4 (0.1%) SARS-CoV-2-positive cases were identified March 20-31 despite evidence of rising community circulation.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Public Health Surveillance , Adolescent , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Pandemics , Pneumonia, Viral/diagnosis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL